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We propose an extended Ginzburg-Landau model for a description of the ambivalence region associated
with the phenomenon of phase inversion observed in dispersed water-oil flow through a pipe. In analogy to the
classical mean-field theory of phase transitions, it is shown that a good quantitative representation of the
ambivalence region is obtained by using the injected phase volume fraction and a friction factor as the
appropriate physical parameters.
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I. INTRODUCTION

The flow of two immiscible liquids often occurs as a dis-
persed flow, where one liquid is present in the other one in
the form of drops. Dispersions are widely used in the petro-
chemical, food, chemical, and pharmaceutical industries.
Handling and controlling dispersion properties is of key in-
terest for practical applications. Oil-water dispersions can oc-
cur as oil drops in a water continuous phase or water drops in
an oil continuous phase. Phase inversion is the phenomenon
by which the dispersed phase becomes the continuous one,
and vice versa. During this process the effective viscosity of
the mixture becomes very large, which leads to a high pres-
sure drop or low flow rate. Prediction of the critical concen-
tration where phase inversion occurs, is important for two
main reasons. It can help in designing processes in such a
way, that a high-pressure buildup due to inversion is avoided.
It can also help in designing processes, in which a dense
dispersion is necessary for achieving the correct product
property �for instance, in the food or pharmaceutical indus-
try�.

The phase-inversion phenomenon has been studied for
many years �see, for instance, �1,2��. Several models pro-
posed in the literature for predicting the critical concentra-
tion are based on a description of a balance between breakup
and coalescence of the drops forming the dispersed phase
�see, for instance, �3,4��. In �5,6� it is assumed that inversion
occurs, when the surface energy of the oil-in-water disper-
sion is equal to the surface energy of the water-in-oil disper-
sion and the surface energy is calculated based on the drop
size which is again calculated from a balance between
breakup and coalescence.

Experimentally it has been found that a so-called ambiva-
lence region exists, in which both phases may be found to be
continuous. Only outside this region one phase is always
continuous and the other is always discrete. Inside the am-
bivalence region either one of the two phases can be continu-

ous and the exact value at which phase inversion occurs de-
pends on the operating conditions, surface tension, pipe
wettability, and chemical properties. Based on some of the
aforementioned models attempts have been made to predict
the ambivalence region. For instance, in �5�, an attempt has
been made to predict the ambivalence region by calculating
the drop size using a different relation for an oil-in-water
dispersion than for a water-in-oil dispersion. In �6� it was
suggested that a possible reason for the hysteresis �ambiva-
lence� region is the time needed after phase inversion for the
new continuous phase to completely wet the wall.

Most of the experiments reported in the literature were
performed in a stirred vessel and usually water and oil were
used. They were often “continuous experiments” during
which the dispersed phase was gradually added to the con-
tinuous phase. For this type of experiments it was found, that
phase inversion could be postponed to a high value ��0.8� of
the dispersed phase volume fraction. Also a wide ambivalent
volume-fraction region existed where the mixture could be
either water continuous or oil continuous �4,7–10�. Alterna-
tively, during “direct experiments” in a stirred vessel the two
liquids were mixed at a certain concentration �11,12� and
inversion usually occurred at a value of the dispersed phase
fraction close to 0.5 �dependent on the properties of the liq-
uids� and no ambivalence region was observed.

Only a few phase-inversion experiments have been car-
ried out in a pipe. Direct experiments in a vertical pipe have
been reported in �13� and direct experiments in a horizontal
pipe in �14–17�. In these experiments particular attention
was paid to the pressure-drop increase over the pipe during
phase inversion. Recently, we have carried out continuous
phase-inversion experiments in a pipe �18�. During these ex-
periments we started with a flow of one of the liquids and
gradually injected the other liquid, while keeping the mixture
velocity constant. We measured also a strong increase in the
pressure drop during the inversion process. Depending on the
injected phase volume fraction � �the ratio between the in-
jection rate of the dispersed phase and the flow rate of the
mixture in the pipe�, it was found that phase inversion could
be postponed up to high values of the dispersed phase. With
decreasing values of � the critical concentration increased,*g.ooms@tudelft.nl
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even up to values of 0.9. Hence, the ambivalence region for
these experiments was very wide at small values of � and it
became narrower with increasing �. At a value of about �
=0.5 the ambivalence region disappeared and the critical
concentration became equal to the one found during direct
experiments �see �19��, whereby the two liquids are injected
from the start simultaneously into the pipe with certain con-
centrations.

It is not evident to us, how this important result from the
experiments reported in �18� can be explained with one of
the aforementioned models. Therefore, we have developed a
framework for the interpretation of the phase-inversion ex-
periments adopting an analogy with the classical Ginzburg-
Landau mean-field theory of phase transitions in thermody-
namics �20�. By considering the friction factor f as function
of the injected phase volume fraction �, we have succeeded
to obtain a realistic description of the ambivalence region for
a range of conditions with different values of the injected
phase volume fraction during continuous experiments.

In Sec. II we briefly review our experimental results
�18,19�. In Sec. III we adopt a Ginzburg-Landau model for
the interpretation of our phase-inversion experiments. In Sec.
IV it is shown how this model yields a quantitative represen-
tation of the ambivalence region by using the injected phase
volume fraction � and a measured friction factor f as the
characteristic physical variables of the phase-inversion pro-
cess. In Sec. V we show how the model can be used in the
absence of experimental data for the friction factor by relat-
ing the measured friction factor f to an effective viscosity.
Our results are summarized in Sec. VI.

II. EXPERIMENTAL OBSERVATIONS

In our experimental studies �18,19� many phase-inversion
experiments were performed on an oil-water flow through a
pipe. Two types of experiments were performed: continuous
experiments and direct experiments.

The sketch of the setup used for the continuous experi-
ments is shown in Fig. 1. The symbols used in the sketches
have the following meaning: V, valves; F1, Krohne Optimass
7000 flow meter �measuring error �0.26%�; F2, Krohne
Corimass E flow meter �measuring error �0.4%�; C1, con-
ductivity cell; and T1, thermocouple. During the continuous
experiments one of the liquids �water or oil� was taken from
the continuous phase tank �see Fig. 1� and recirculated
through the pipe loop by means of pump 1. After recirculat-
ing the liquid for a few minutes to ensure that the pipe walls
were wetted by the liquid, injection of the other liquid started

by pumping �using pump 2� the dispersed phase through the
injector into the pipe loop. During the injection, valve 2 was
opened and the same volume of dispersion liquid was re-
moved from the pipe loop as the volume that was injected.
Flow meter 1 measured the density and the flow rate of the
mixture in the pipe loop. The mixture velocity was kept con-
stant during the experiment by an electronic feedback system
�pump 1 was controlled based on measurements of flow
meter 1�.

During continuous experiments the dispersed phase was
gradually added to the flowing mixture in the closed pipe
loop. The dispersed phase volume fraction was slowly in-
creased and at a certain moment inversion occurred. During
these experiments it was noticed that the dispersed phase
fraction at which inversion occurs, depends nearly linearly
on the injected phase volume fraction �. By starting an ex-
periment with pure water and gradually adding oil and by
starting with pure oil and gradually adding water the ambiva-
lence region was measured. It was found that the ambiva-
lence region is almost independent of the Reynolds, Froude,
and Weber numbers and also independent of the injection
velocity of the dispersed phase �as long as the mixture ve-
locity is sufficiently large ��2 m /s��. However, it was found
that the injection phase volume fraction � had a significant
influence on the width of the ambivalence region. As can be
seen in Table I all experiments were conducted at high Re,
We, and Fr numbers. According to �21� a mixture velocity of
2 m /s is sufficiently large to be sure of a dispersed pipe flow
during our experiments.

For direct experiments the setup shown in Fig. 1 was
modified. The pipe loop was opened and two additional
straight pipe sections were added. During the direct experi-
ments, the two liquids were injected �from separate tanks�
simultaneously into the pipe by means of pump 1 and pump
2. The two liquids flowed through the pipe to the large sepa-
ration tank, which was situated at the end of the last pipe
section. The mixture was injected at a constant concentration
for at least 40 s. Flow meter 1 measured the density and the
flow rate of the mixture in the pipe. The pressure gradient
was measured at six different positions: Immediately down-
stream of the inlet and at distances of 2.0 m �125d�, 5.0 m
�313d�, 11.7 m �731d�, 18.7 m �1169d�, and 26.5 m �1656d�
from the inlet, where d is the pipe diameter.

The phase-inversion process was determined by the mix-
ing between oil and water at and after the inlet. At the critical
concentration, water-continuous, and oil-continuous regions
were created simultaneously. These regions interact while
being transported downstream by the flowing mixture. The
interaction was very similar to the one observed during the
phase-inversion process of the continuous experiments. The
direct experiments can be considered as limiting cases of
continuous experiments, with a large injection phase volume
fraction of the dispersed phase and with inversion taking
place before one cycle through the pipe loop is completed.
No ambivalence region was observed during the direct ex-
periments. In the case of direct experiments the injected
phase volume fraction is calculated as the ratio of the flow
rate of the liquid with the lowest volume fraction and the
flow rate of the mixture in the pipe.

The observed ambivalence region for the case of continu-
ous experiments is shown in Fig. 2. As can be seen from this

FIG. 1. Sketch of the experimental setup for continuous
experiments.
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figure, the width of the ambivalence region depends strongly
on the injected phase volume fraction �. The experimental
results lie on two lines, one for the water-to-oil experiments
and one for the oil-to-water experiments. �Two experimental
data points for the oil-to-water experiments do not coincide
with the line. The explanation for this deviation was given in
�18�: Entrapment of the continuous phase �oil� into the dis-
persed phase �water� increases the effective dispersed phase
fraction. If the concentration of oil present as oil droplets
inside the water drops would be subtracted from the total oil
concentration, the experimental data points would fit the line.
These two points will be omitted in the remainder of this
presentation.�

In Fig. 3 the friction factor f �calculated from the mea-
sured pressure drop by means of f =2�Pd /�u2L, where �P
is the pressure drop over a distance L, d the pipe diameter, �

the density and u the average mixture velocity� is shown as
function of the oil volume fraction � for water-to-oil con-
tinuous experiments presented in Fig. 2. As can be seen, the
friction factor f strongly increases when the concentration of
the dispersed phase exceeds 0.6. The friction factor does not
depend on the injected phase volume fraction prior to the
occurrence of phase inversion. �Although the critical concen-
tration at which phase inversion occurs, depends on �.� The
friction factor was also found to be independent of the mix-
ture velocity. A similar behavior was observed for oil-to-
water continuous experiments.

Figure 4 shows the different stages of the phase-inversion
process during a continuous experiment of a water-
continuous flow to an oil-continuous flow �water-to-oil ex-
periment� for a mixture velocity of 1 m /s and an injection
phase volume fraction �=0.125. The left-hand picture shows
the start of the inversion process at an oil volume fraction
�=0.84. Some larger oil multiple drops �containing water
droplets� are formed in a water-continuous region due to coa-
lescence of the original oil drops. After 16 s �second picture�
the number of these oil-continuous pockets has increased due
to continuous oil injection via the injector. With further oil

TABLE I. Dimensionless numbers for water-continuous or oil-continuous experiments at different superficial velocities. �The superficial
velocity of a certain fluid is defined as the ratio of the volume flow rate of that fluid and the pipe cross section.� For the calculation of the
Froude number the density difference between water and oil is used and for the calculation of the Weber number the interfacial tension
between the two liquids. “Dispersed phase boundary” indicates the transition from the dispersed flow pattern to another flow pattern
according to �21�

Water Re Fr We

1 m /s 1.6	104 6.4 354

2 m /s 3.2	104 25.5 1418

3 m /s 4.8	104 57.3 3190

1.34 m /s 2.1	104 11.4 637 dispersed phase boundary �21�
Shell macron EDM 110 Re Fr We

2 m /s 0.7	104 25.5 1129

3.5 m /s 1.1	104 78 3458

1.35 m /s 0.4	104 11.6 515 dispersed phase boundary �21�
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FIG. 2. �Color online� Inversion map. The upper line gives the
oil volume fraction at the point of inversion as measured during
water-to-oil continuous experiments. The lower line represents the
oil volume fraction at inversion as measured during oil-to-water
continuous experiments. The region in between the two lines is the
ambivalence region, where both oil and water can be the continuous
phase. Also the oil volume fraction at inversion as measured during
the direct experiments is indicated.
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FIG. 3. �Color online� Friction factor for three water-to-oil ex-
periments at a mixture velocity of 2 m /s and 3 m /s and different
values of the injected phase volume fraction �0.03, 0.125, 0.18�.
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injection, isolated water-continuous pockets are created em-
bedded in oil-continuous regions. After 43 s �third picture�
the oil-continuous pockets in water-continuous regions and
water-continuous pockets in oil-continuous regions are about
the same in number and size. With further oil injection, the
oil-continuous pockets disappear and only water-continuous
pockets in an oil-continuous region remain. After 87 s �right-
hand picture� the phase inversion is completed and the mix-
ture is oil-continuous with water drops.

During a direct experiment the phase fractions were kept
constant in time. Since the two phases are well mixed the
dispersed phase volume fraction in the pipe is equal to the
dispersed phase volume fraction at the point of injection at
the entrance to the pipe loop. Close to the point where the
flow changed from a water-continuous to an oil-continuous
flow or vice versa, strong variations in the morphological
structures of the dispersion were observed. For a mixture
velocity of 2 m /s, these changes occur at oil volume frac-
tions � between 0.5 and 0.6. Figure 5 shows the dispersion
morphology for two different values of the oil volume frac-
tion. At �=0.56 �see left-hand picture� the flow consists of
many �water-continuous� pockets in oil-continuous regions
�dark regions�, and �multiple� oil drops in water-continuous
regions �see, for instance, the center part of the picture�. At
�=0.58 �see right-hand picture� most of the flow field is oil
continuous.

There is an important difference between a continuous
experiment and a direct experiment. In a continuous experi-
ment the inversion process starts with the coalescence of
drops leading to the formation of larger drops, pockets, and
regions by encapsulation of parts of the continuous phase.
Finally this process causes the disappearance of regions of
the originally continuous phase. In a direct experiment the
two liquids are mixed from the start at a constant concentra-
tion of the phases and there is no preliminary structure. De-
pending on the concentration, the liquids mix as a water-
continuous mixture or an oil-continuous one. However, at an
oil volume fraction � between 0.5 and 0.6 both water-
continuous and oil-continuous regions are created during the
same experiment �because of the nonhomogeneous mixing,
in particular in the T-junction and the entrance region of the
pipe�. At a value of � between 0.5 and 0.6, none of the
regions is sufficiently strong to dominate the other one, and
so both regions flow downstream. These regions interact, en-
trap parts of the other continuous phase, breakup, and coa-
lescence causing a large pressure gradient over the pipe.

A more detailed description of the experimental observa-
tions of phase inversion during continuous and direct experi-
ments can be found in some of our previous presentations

�18,19�. Pictures taken during phase inversion were pre-
sented and measurements of the pressure drop and conduc-
tivity were reported. The behavior of the pressure drop in-
crease during inversion was explained by visual
observations. Also interactions during phase inversion were
described. These results showed that phase inversion during
continuous and direct experiments, despite the different on-
set, has a very similar behavior.

III. GINZBURG-LANDAU MODEL FOR PHASE
INVERSION

During phase inversion very complex structures are cre-
ated �as described in �19��. Regions, pockets, and �multiple�
drops interact with each other. The complexity of the struc-
tures and their interaction make it very difficult to model
phase inversion in detail. However, we know from thermo-
dynamics that phase transitions can be described by a mean-
field approach without any need for a knowledge of the de-
tailed molecular interactions. In this paper we propose a
similar approach for a description of the phenomenon of
phase inversion.

The mean-field theory of phase transitions is based on a
classical Landau expansion of an appropriate mesoscopic po-
tential �G� in terms of an order parameter s. The simplest
version is a two-term Ginzburg-Landau model of the form

G�s� = G�s� = s4 + as2, �1�

where the coefficient a is a control parameter that is related
to the difference between the actual temperature T and a
critical temperature Tc �20,22�. This model yields a bifurca-
tion at a=0 �i.e., at T=Tc� with a quadratic phase boundary
asymptotically close to the critical point �23�. It is of interest
to note that the Ginzburg-Landau potential given by Eq. �1�
is symmetric in terms of the order parameter s �24�. It has

FIG. 5. Direct experiment at a mixture velocity 2 m /s. Pictures
taken at different oil volume fractions �left-hand picture at �
=0.56, right-hand picture at �=0.58�.

FIG. 4. Inversion from a water-continuous to an oil-continuous flow during a continuous phase-inversion experiment.
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been demonstrated recently that the actual asymmetries ob-
served in phase transitions in fluids and fluid mixtures do not
originate from any odd terms in the Ginzburg-Landau poten-
tial �1�, but from the relationship between the order param-
eter s and the physical densities, both for the mean-field
theory of phase transitions which is the one relevant here
�25�, and for the nonclassical theory of phase transitions
�26,27�. A major difference between equilibrium phase tran-
sitions and nonequilibrium phase transitions is that in non-
equilibrium the phase transition is driven by an externally
imposed field. In our problem the field driving the phase
transition is the shear rate induced by the pressure drop. Such
an external field will necessarily break the symmetry of the
mesoscopic potential in terms of the order parameter and,
hence, will induce in first approximation a term proportional
to s. Thus to describe our phase-inversion experiments we
need a slightly more general Ginsburg-Landau potential of
the form �28,29�:

G�s� = s4 + as2 + bs , �2�

where the second control parameter b is the one driving the
nonequilibrium phase transition which in the subsequent sec-
tion will be identified with the friction factor f , which is
proportional to the pressure drop. In this section we show
that the mesoscopic potential Eq. �2� has all the ingredients
to account for the phenomena observed in our phase-
inversion experiments.

Depending on the values of a and b the G�s� function has
one or two minima. The location of the minima in the G�s�
domain are found by the following condition:

dG

ds
= 4s3 + 2as + b = 0, �3�

and the number of minima changes from one to two when
the second derivative of G to s becomes equal to zero,

d2G

ds2 = 12s2 + 2a = 0. �4�

Eliminating s from Eqs. �3� and �4� leads to a relation be-
tween a and b for the change over from one to two minima

�2a/3�3 + b2 = 0. �5�

The shape of this relation between a and b is shown in Fig.
6. Asymptotically the two branches merge according to a
power-law behavior of the form b
 �a�3/2. Hence, Eq. �2� is
also being referred to as a bifurcation model exhibiting a
cusp catastrophe �4,28,29�.

When the line M-P-R-Q and the line N-Q-S-P in Fig. 6
are followed, the shape of the G�s�-function changes as
sketched in Fig. 7. Let us start with the line M-P-R-Q. At
point M only one minimum in the free energy exists and the
system is assumed to be in this minimum �indicated by the
black spot in Fig. 7�. Increasing b in Fig. 6 moves the system
to point P, where a second minimum starts to appear. At
point R there are two symmetric minima with a barrier be-
tween them, so the system remains in the left-hand mini-
mum. At point Q the barrier disappears and even a small
perturbation causes the system to move to the right-hand

minimum. Similar behavior is observed for the line N-Q-S-P,
which is followed with decreasing value of b. As can be seen
a hysteresis occurs. When the line M-P-R-Q is followed, a
transition from the left-hand minimum to the right-hand one
takes place at point Q. When the line N-Q-S-P is followed, a
transition from the right-hand minimum to the left-hand one
occurs at point P. So between P and Q two states are possible
and the actual state depends on the starting condition.

This behavior with a hysteresis effect based on the
Ginzburg-Landau model, Eq. �2�, is very similar to the physi-
cal behavior in the ambivalence region observed in our con-
tinuous experiments. Also Fig. 6, where two states are pos-
sible between the two converging lines, looks the same as the
ambivalence region shown in Fig. 2. So the idea to use an
approach for the description of phase inversion similar to the
one used for the description of phase transitions looks attrac-
tive. In the next section this idea will be worked out in detail.

IV. APPLICATION TO PHASE INVERSION

We submit that the injected phase volume fraction � is a
correct quantity to be used as a control parameter for the
interpretation of the ambivalence region measured during
phase-inversion experiments in terms of the hysteresis region
of the Ginzburg-Landau model. With increasing � the injec-
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FIG. 6. Relation between a and b where a changeover takes
place from one to two minima in the G�s� function.
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FIG. 7. Changes in the shape of the G�s� function with passage
through the line M-P-R-Q and the line N-Q-S-P in Fig. 6.
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tion rate of the dispersed phase into the mixture increases �at
constant mixture velocity�. This causes a stronger distur-
bance in the dispersion and the barrier in the G�s� domain
can more easily be taken. Therefore, with increasing � the
width of the ambivalence region will become smaller. Hence,
we use � as the first physical relevant parameter.

In systems described by the mesoscopic potential Eq. �2�,
b represents an external ordering field that may be switched
off. For a water-oil flow through a pipe this is the shear stress
field caused by the external pressure drop over the pipe. As
the correlating quantities should be nondimensional, this
leads to the friction factor f �nondimensional pressure drop�
as the second physical relevant parameter.

The order parameter s in the extended Ginzburg-Landau
potential Eq. �2� represents the possible mesoscopic condi-
tions of the liquids during their flow through the pipe. With
mesoscopic conditions, we mean their mutual distribution
�size of drops, presence of multiple drops, etc.�. The result-
ing macroscopic condition will correspond to a minimum of
G�s� as function of s. To calculate G�s� as a function of s
explicitly is difficult. However, as also noted by previous
investigators �29�, the nice property of the Ginzburg-Landau
model is that it gives an explicit relation, Eq. �5�, for the
control parameters associated with the macroscopic states of
the system that will enable us to characterize the ambiva-
lence region in terms of only two system-dependent param-
eters.

As mentioned in Sec. II, we have observed an ambiva-
lence region with a cusp. At the termination of the cusp �in
Fig. 6� a=0. The continuous experiments show that the
width of the ambivalence region decreases with increasing
value of �. The ambivalence region even disappears at about
�=0.5. This makes sense, as at �=0.5 it does not matter
which liquid is in the continuous phase and which liquid is in
the dispersed one. So the cusp in the ambivalence region is at
about �=0.5. Hence, we assume the following linear relation
between a and �,

a = � − 0.5. �6�

The relation between b and f is assumed to have the follow-
ing form:

b = Kb1�f − Kb2� �7�

in which Kb1 and Kb2 are constants. To determine the values
of these constant two experimental data points �A and B�
were fitted to Eq. �5� implied by the Ginzburg-Landau
model. During a water-to-oil experiment with an injection
phase volume fraction of �A=0.05 phase inversion took
place at an oil volume fraction of �A=0.9 and during an

oil-to-water experiment with a �B=0.05 phase inversion oc-
curred at �B=0.31. These two points A��=0.05,�=0.9� and
B��=0.05,�=0.31� �and their related f values� were se-
lected to determine Kb1 and Kb2.

Once the constants have been determined, substitution of
Eqs. �6� and �7� into Eq. �5� gives the ambivalence region in
the �� , f� domain. Using the experimentally found relation
between � and f , we can also calculate the ambivalence
region in the �� ,�� domain. The result is shown in Fig. 8. As
can be seen the calculated ambivalence region agrees well
with the experimental data. Also the value from the direct
experiment is on the calculated line. �The curve in Fig. 8
does not terminate in the cusplike behavior as in Fig. 6, since
the conversion from f to � distorts the curve.�

We used the experimental data points A and B to deter-
mine the constants Kb1 and Kb2, since these points have the
highest accuracy. To investigate the sensitivity of the descrip-
tion to the choice of pair of data points, two other pairs were
taken at �=0.125 �pair C, D� and �=0.18 �pair E, F� and
used to calculate the constants and the predicted values of
the critical concentrations at �=0.05 �pair A, B�. The results
are shown in Table II. As can be seen, the values calculated
for the critical concentrations at �=0.05 are rather insensi-
tive to the pairs of data points selected for the determination
of the two system-dependent parameters.

V. APPLICATION IN TERMS OF A THEORETICAL
FRICTION FACTOR

In practice experimental data for the friction factor will
not always be available. So it would seem that the method
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FIG. 8. �Color online� The oil volume fraction � as a function of
the injected phase volume fraction � at the boundaries of the am-
bivalence region. The circles and squares indicate the experimental
data points and the curves represent the values calculated from the
Ginzburg-Landau model.

TABLE II. Predicted critical concentrations �A and �B when different pairs of data points �A,B; C,D; and
E,F� are used for the determination of the constants Kb1 and Kb2.

� Point 1 Point 2 Predicted �A Predicted �B

0.05 �A=0.9 �B=0.31 0.9 0.31

0.125 �C=0.85 �D=0.375 0.87 0.335

0.18 �E=0.82 �F=0.37 0.86 0.34
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presented in the last section can then not be applied. How-
ever, there is a solution to this problem. In practice experi-
mental data on the oil volume fraction � at inversion are
often available and these data can be used to predict the
friction factor f at inversion by applying an empirical corre-
lation between f and �.

Assuming a homogeneous dispersed flow we can calcu-
late the friction factor by applying the Blasius correlation
�2000�Re�105�

f =
0.316

Re0.25 . �8�

The effective viscosity � in the Reynolds number �Re� can
be calculated by one of the following correlations:

�i� Mooney equation �30�,

� = exp� 2.5�

1 − k�
� �9�

with k=0.8.
�ii� Krieger-Dougherty equation,

� = �0�1 −
�

�c
�−5/2�c

. �10�

�iii� Pal model 1 �31�,

��2� + 5K

2 + 5K
�3/2

= exp� 2.5�

1 − �/�c
� . �11�

�iv� Pal model 2 �31�,

��2� + 5K

2 + 5K
�3/2

= exp�1 −
�

�c
�−2.5�c

. �12�

In Eqs. �10�–�12� �c is the closed-packing oil volume frac-
tion. Extrapolating our water-to-oil experiments reported in
�18� we find �c=0.95. K is the ratio between the oil viscosity
and the water viscosity. Applying one of these correlations to

calculate � it is possible to calculate Re, when also the mix-
ture velocity and the effective density are known. Finally the
friction factor f is calculated from Re by means of Eq. �8�.
�By using Eq. �8� there is an influence of the mixture veloc-
ity on the friction factor and, therefore, also on the predicted
width of the ambivalence region. However, as most of the
experiments were performed in a rather narrow region of
mixture velocities, this predicted influence is almost negli-
gible. This is in agreement with the experimental data.� Then
it is possible again to apply the method of the preceding
section for predicting the ambivalence region. The results are
shown in Fig. 9. The same two points as in the preceding
section have been used to determine the constants in Eqs. �6�
and �7�. All models, except the Pal model 1, represent the
boundaries of the ambivalence region rather well.

VI. DISCUSSION

As can be seen from Figs. 8 and 9, a Ginzburg-Landau
model can be used to describe phase inversion in an oil-
water mixture. This is due to the close similarity between the
hysteresis region for first-order phase transitions and the am-
bivalence region for phase inversion between two liquids in a
dispersed flow.

According to our measurements �18�, the ambivalence re-
gion is unique for a specific water-oil mixture. For such a
mixture the ambivalence region depends on the injected
phase volume fraction. It is independent of the Reynolds,
Froude, and Weber numbers and also independent of the in-
jection rate, as long as the mixture velocity is large enough.
With our method the ambivalence region can be fully deter-
mined by carrying out only two experiments. Of course,
when the oil type is changed or when a surfactant is added,
the ambivalence region will change and two new experi-
ments need to be performed.
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FIG. 9. �Color online� The oil volume fraction � as a function of the injected phase volume fraction � at the boundaries of the
ambivalence region. The circles and squares indicate the experimental data points. The solid curves represent the values, earlier shown in
Fig. 8, calculated from the Ginzburg-Landau model when the system-dependent constants are determined from the experimental friction
factor f . The other curves represent the calculated values when the system-dependent constants are determined from the friction factor
estimated with the aid of Eqs. �8�–�12�.
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